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1 Introduction

1.1 Brief History of Lensing

In 1730, Sir Isaac Newton’s (1643-1727) fourth volume of Opticks was published
[1]. At the end of the volume, Sir Newton set forth several queries, the first of
which was, ”Do not Bodies act upon Light at a distance, and by their action
bend its Rays, and is not this action (cæteris paribus) strongest at the least
distance?”. Calculating the deflection of light by a point source in Newtonian
gravity yields [1]

δN =
2GM

bc2
, (1)

where G is Newton’s gravitational constant, M is the mass of the deflecting
body, c is the speed of light, and b is the impact parameter of the photon. In
1915, Albert Einstein (1879-1955) published the deflection of light by a point
source according to his general relativity in a curved space-time [2], yielding
twice the Newtonian value,

δGR = 2δN =
4GM

bc2
. (2)

In 1919, Sir Arthur Eddington (1882-1944) measured the deflection of starlight
by the sun during a solar eclipse, thereby providing a verification of one of the
predictions of Einstein’s theory.

1.2 Lensing as a Weight Scale

In 1933, Fritz Zwicky (1898-1974) postulated the existence of dark matter when
he was examining the Coma cluster [3]. Four years later he extended the idea to
galaxy clusters deflecting light from background sources [3]. Since the location of
the lensed images depends on the mass of the deflecting object (eq (2)), studying
the images can be used to measure the mass of the deflecting object. Since then
the idea has been extended to measuring the masses of galaxy clusters.

1.3 Lensing as an Extra-Galactic Telescope

In addition to giving a new way to measure astronomical masses, lensing offers
a way to see deeper into the universe. Since light is deflected it magnifies the
background source, similar to how a magnifying glass works. The magnification
boost provided by galaxy clusters can be enough that sources too faint to be seen
with today’s most powerful telescopes become visible and available for study.
This fact is the basis for the collaboration that I am a part of, known as the
Sloan Giant Arcs Survey (SGAS) [4–7]. This group is using galaxy clusters as
telescopes to study star formation in galaxies at redshift around two [8–12], the
epoch at which most of the star formation in the universe occurred [13].
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2 Lensing Theory

In this section I provide a short summary of gravitational lensing theory, based
on the proceedings of the Saas-Fee Gravitational Lensing course, Kochanek et
al. (2006) [14].

2.1 The Lensing Equation

Figure 1 below shows the basic geometry of a gravitational lens. It is assumed
that the distances involved are much larger than the size of the source and of
the lens, allowing us to use a thin-lens approximation.

Figure 1: Basic geometry of a gravitational lens for a source in the source plane
at distance Ds from the observer, and a deflector (lens) at the lens plane at a
distance Dd from the observer, under the thin lens approximation. A source
(say a galaxy) is located in the source plane at a distance η from a reference
line, at a distance Ds from the observer (us on Earth). This corresponds to an
angular distance β. Light travels from the source, intersecting the lens plane at
a distance ξ from the reference line, which is at a distance Dd from us. This
corresponds to an angular distance θ. The light is deflected by an amount α̂.
This causes the image to appear shifted by an amount α = θ − β, where α
is the scaled deflection angle (defined below) (image from Saas-Fee Lectures on
Gravitational Lensing [14]).

By assuming small angles, we see that Dsθ = Dsβ+Ddsα̂
1. Or, dividing by

Ds and rearranging the equation, β = θ − Dds

Ds
α̂(ξ). By noting that ξ = Ddθ,

we arrive at the lensing equation,

β = θ − Dds

Ds
α̂(Ddθ) ≡ θ −α(θ), (3)

1Throughout this paper bold font indicates a vector quantity
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where we define the scaled deflection angle, α(θ) ≡ Dds

Ds
α̂(ξ).

2.2 Convergence, Shear, and Magnification

The distortion of images can be described by the Jacobian matrix,

J(θ) =
∂β

∂θ
=

(
1− κ− γ1 −γ2
−γ2 1− κ+ γ1

)
. (4)

Here κ(θ) is a dimensionless surface mass density, or convergence, defined as

κ(θ) ≡ Σ(Ddθ)

Σcr
,

with Σ(Ddθ) the surface mass density of the lens and

Σcr ≡
c2

4πG

Ds

DdDds

the critical surface mass density (see figure 2). The regime of strong lensing is
when Σ > Σcr.

We have also defined the shear, γ ≡ γ1 + iγ2 = |γ|e2iφ. The shear in some
sense skews the images (see figure 2).

Equation (4) tells us how the location of the source changes if we change
the location(s) of the image(s). If the source is small compared to the scales at
which the lens properties change, then the inverse of this matrix is called the
magnification tensor,

M(θ) = J−1. (5)

This tensor tells us the local mapping from the source to the image plane. The
magnification (again for a small source) is defined as the determinant of the
magnification tensor,

µ ≡ det M =
1

det J
=

1

(1− κ)2 − |γ|2
. (6)

So we see that for a lens with no shear (|γ| = 0), that if κ = 1 (Σ = Σcr) then
the image will be infinitely magnified. Infinite magnification will also occur
when |γ|2 = (1 − κ2). Of course infinite magnification is unphysical, and the
resolution to this problem is in the next section.
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Figure 2: Figure showing effects of convergence and shear. The convergence
magnifies (or demagnifies) and the shear skews the images (image from Narayan
and Bartelmann’s lectures on gravitational lensing [15]).

2.3 Critical Curves and Caustics

As can be seen from equation 6, for certain values of κ and γ the magnification
can approach infinity. These values translate to locations in the image plane,
called critical curves. If these curves are mapped from the image plane to the
source plane (via the lensing equation 3) then we get what are called caustics.
The locations of the images, their parity, magnification, and morphology are
determined by the source’s location relative to the caustics. If the source lies
exactly on a caustic, then it’s image will lie exactly on a critical curve, and
therefore will theoretically be infinitely magnified. This apparent violation of
the conservation of energy is resolved by the fact that for a source to lie exactly
on a caustic it must be infinitely small. As the size of a source shrinks, eventually
the assumption of geometric ray optics breaks down and wave optics must be
used. This has been done [14] and the predicted interference pattern has a finite
magnification.

There are two different critical curves (and associated caustics), the tangen-
tial and radial curve. As the source approaches a tangential caustic its image
will be magnified in the tangential (φ) direction along the tangential critical
curve and as a source approaches a radial caustic it will be magnified in the
radial (r) direction perpendicular to the radial curve.

As shown by Burke [16], lensing always produces an odd number of images.
This means that if a source is outside of all the caustics, the lens will produce
one image, that is both deflected and distorted. As it crosses a caustic two more
images will be created (see figure 3). As it crosses a second caustic five images
will be created, and so on.
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Figure 3: Figure showing relationship between sources, caustics, and multiple
images. The right image in each pane shows a source and where is is relative to
caustics and the left image in each pane shows the image created by that source.
Note that in the top-left pane there is a merging pair that is crossing the critical
curve. This is one image being turned into two because the source is crossing a
caustic (image from Narayan and Bartelmann’s lectures on gravitational lensing
[15]).

2.4 Parametric vs. Non-parametric Modeling

There are two ways to model a lens–parametric and nonparametric. Parametric
modeling is when an analytic function is used to describe the potential. There
are many models to choose from, but we use the PIEMD (see appendix). Non-
parametric models are different in that the lensing potential is treated as a
function of the surface density [14]. These models reconstruct the mass distri-
bution as a map defined on a grid of pixels [17].

6



2.5 Outline of Lenstool

To model gravitational lenses we use the publicly available software, LENSTOOL
[17]. This is a program that uses ray tracing to find the best-fit model for a
strong gravitational lens. As an example of how the program works, assume
that there is a system with multiple images of a galaxy. Lenstool will send rays
of light starting from each of the images and compute their positions in the
source plane. Depending on the parameters of the model (see below) the light
rays will land in different places. A χ2 is assigned to the scatter between the
points. This is done as follows: assume we have a source with position β. Also
assume that this source produces n images θi. The light rays traced through
the θi’s land in the source plane at positions βi with uncertainties σi. The χ2

is calculated by

χ2
source =

n∑
i=1

(
β − βi

σi

)2

. (7)

If the model were perfect then all of the light rays through the multiple images
would land at identically the same spot in the source plane and the χ2 would be
identically zero. For each non-perfect model though there will be some scatter
between points, and the best-fit model is deemed the one that has the minimum
amount of scatter (or equivalently, the χ2 is minimum for the best-fit model).
This is called source plane optimization. In image plane optimization rays of
light are sent through the lens back to the source plane, and then sent again
through the lens and see where they fall in the image plane. To calculate a χ2

rays of light are sent from the source plane at the predicted source location and
their (n) locations in the image plane θi are computed. The formula is

χ2
image =

n∑
i=1

(
θi(β)− θi

σi

)2

. (8)

Again the model that provides the minimum amount of scatter is deemed the
best-fit model. This method takes significantly more time to run and therefore is
only done after a satisfactory model is obtained with source plane optimization.

3 SDSS J1438+1454

My research has focused on making models for strong gravitational lenses.
The rest of this paper will focus on one lens in particular, SDSS J1438+1454
(hereafter SDSS 1438) (see figure 4). The discovery of this lens and a multi-
wavelength analysis of the source galaxy are presented in Gladders et al. [18].
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Figure 4: HST image of SDSS 1438. This is a composite image of three filters,
centered on: 1400 nm, 814 nm, and 606 nm.

3.1 SGAS Survey

The Sloan Giant Arcs Survey2 is a survey for cluster- and group-scale gravita-
tional lenses in the Sloan Digital Sky Survey [19] (SDSS). The survey yielded
hundreds of lenses [5–7] with a good understanding of its completeness and
purity (Gladders et al. in preparation). SGAS clusters have been confirmed
through optical follow up using medium and large ground-based telescopes (such
as the Nordic Optical Telescope, Gemini). An extensive follow-up campaign
provides multi-wavelength observations of all the secure lenses including imag-
ing and spectroscopy of the clusters and the background sources from Gem-
ini North [20], Gemini South, Magellan [11], and imaging with SOAR [21],
NOT [22, 23], and Spitzer. As part of this campaign, about 40 of the SGAS
clusters were followed up by dedicated HST programs GO13003, GO13337,
GO13437, GO13639, GO14230, GO14170 [24–26].

3.2 SDSS J1438+1454

This cluster was selected as a candidate for the SGAS project because with SDSS
data the object located 18.′′5 WSW of the BCG strongly resembles evidence of

2Michael Gladders, University of Chicago (PI); Keren Sharon, (1); Jane Rigby, NASA God-
dard Space Flight Center; Eva Wuyts, Max Planck Institute for Extraterrestrial Physics; Matt
Bayliss, Harvard University; H̊akon Dahle, Institute of Theoretical Astrophysics; Joe Hen-
nawi, Max Planck Institute for Astronomy; Katherine Whitaker, University of Massachusetts
Amherst; Traci Johnson, (1); Rachael Paterno-Mahler, (1); Katherine Murray, (1); Catherine
Cerny, (1); and myself, (1). (1): University of Michigan
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strong lensing (see figure 4). Follow-up work concluded that it was in fact a
cluster-member galaxy, however a reddish tint was noticed around the BCG.
With Spitzer observations with IRAC at 3.6 µm and 4.5 µm this red object was
seen to be very bright in the infrared an likely to be multiply imaged [18].

We used GALFIT [27] to model the light of the BCG, which was best fit with
a multi-component Sérsic profile. We then subtracted the BCG model from the
imaging data in each filter, to produce an image with the BCG light removed
(see figure 5)3

3.3 Hubble Space Telescope Imaging Data

SDSS 1438 was observed by HST Cycle 21 program GO–13437 (PI: Rigby)
during three orbits. Imaging with the Advanced Camera for Surveys (ACS) was
executed over one orbit on GMT 2014 March 5, in F814W (600 s) and F606W
(780 s). Wide Field Camera 3 (WFC3) grism observations were conducted in
two different roll angles, one on GMT 2014 March 5 and one on May 30, using
the G141 grism (2406 s each), with a F140W imaging frame taken at each roll
angle (285 s each). The spectroscopic observations are not used in the lensing
analysis. The ACS images were taken with a 3-point line dither using 1000×1000
pixel subraster to manage buffer dumps, resulting in three frames per filter.
Since the charge transfer efficiency of the ACS detector is decreasing, post-
observation image corrections were applied to individual exposures using the
Pixel-based Empirical charge transfer efficiency Correction Software provided
by STScI. Individual frames were then combined using AstroDrizzle (Gonzaga
at al. 2012) with a pixel scale of 0.′′3 pixel−1, and a drop size of 0.5 (WFC3)
and 0.8 (ACS), following Sharon et al. (2015).

All the images were aligned and registered to the same pixel frame as the
F140W image.

3The GALFIT modeling and image subtraction analysis were conducted by my collaborator
M. Gladders. The HST data were reduced by my collaborator Michael Florian.
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Figure 5: HST image of SDSS 1438 with BCG light removed. The BCG was
obscuring much of the detail and so was removed with a GALFIT program [18].
This is a composite image of three filters centered on: 1400 nm, 814 nm, and
606 nm.

3.4 Constraints

The basic problem in lensing is to solve the lensing equation,

β = θ −α(θ,p), (9)

where p represents the model parameters (see below). To solve equation 9 we
need at least as many constraints as free parameters. To get the constraints we
use the RA and DEC of multiply imaged parts of the galaxy. Looking at the top
image of the lensed galaxy in figure 5 we see that is a spiral galaxy with a yellow
central core and red spiral arms. In the spiral arms we see several white knots.
These are star-forming regions of the source. They are easily distinguishable
in each image and so were used as constraints, along with the yellow core (see
figure 6). Table 1 below is a table listing all constraints used.
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Constraints
Symbol Image

ID
R.A.(J2000)
[degrees]

Decl.(J2000)
[degrees]

Magenta Circle 10.1 219.68704 14.904572
10.2 219.68696 14.903430
10.3 219.68777 14.901929

Blue Diamond 11.1 219.68717 14.904282
11.2 219.68703 14.903652
11.3 219.68787 14.901701

Blue Circle 12.1 219.68686 14.904191
12.2 219.68679 14.903699
12.3 219.68764 14.901701

Blue Square 13.1 219.68662 14.904108
13.2 219.68660 14.903708
13.3 219.68737 14.901716

Cyan Square 14.1 219.68677 14.904353
14.2 219.68672 14.903530
14.3 219.68752 14.901806

Cyan Circle 15.1 219.68684 14.904579
15.2 219.68679 14.903349
15.3 219.68756 14.901952

White Circle 16.1 219.68641 14.904516
16.2 219.68650 14.903197
16.3 219.68707 14.902029

Red Square 17.1 219.68747 14.904875
17.2 219.68833 14.903578
17.3 219.68816 14.902269

Red Circle 18.1 219.68773 14.904724
18.2 219.68843 14.903754
18.3 219.68833 14.902189

Yellow Circle 19.1 219.68685 14.904857
19.2 219.68690 14.903173
19.3 219.68753 14.902201

Green Circle 20.1 219.68738 14.904508
20.3 219.68804 14.901883

Pink Circle 21.1 219.68824 14.904039
21.2 219.68785 14.904465

Orange Circle 22.1 219.68731 14.904751
22.2 219.68819 14.903645

Gold Square 23.1 219.68716 14.904693
23.2 219.68796 14.903606

Table 1: Table of constraints. The convention for the image IDs is that the
number to the left of the decimal point corresponds to a particular set of images
and the number after the decimal point corresponds to a specific image within
that set.
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Figure 6: Constraints used for lens model, over plotted on an image of the lens
in the F606W filter, after having the light of the BCG modeled and substracted.
Similar symbols and colors represent multiple images of the same source position
(see table 1.)

3.5 Parameters

The number of free parameters is determined by which mass profile we use
to model the halos and how many halos we use. All the halos are modeled
as pseudo-isothermal ellipsoidal mass distributions (PIEMD, see appendix A),
which has seven free parameters: center point x, center point y, ellipticity e,
position angle θ , core radius rcore, cut radius rcut, and velocity dispersion σ.
Standard practice is to use one halo that represents the cluster as a whole. We
allow all its parameters to vary, with the exception of the cut radius: we fix
the cut radius at 1000 kpc because this parameter is not well constrained. This
is because the cut radius is well outside the outermost arc and thus cannot be
constrained by the lens model. We add another halo to represent the brightest
cluster galaxy (BCG) and allow its parameters to vary as well. However for
the BCG we fix its RA and DEC because these are known quantities. We
fix the cut radius for the BCG at 300 kpc. Additional halos can be added as
needed depending on the complexity of the lens and the availability of lensing
constraints. In addition to the optimized halos we also allow contributions to
the mass from other cluster-member galaxies. Cluster-member galaxies were
identified from the HST photometry by their F814W-F140W color on a color-
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magnitude diagram. The positions, ellipticity, and position angle were fixed to
their observed values, and the PIEMD profile parameters, rcut, rcore, and σ, were
scaled to their F140W luminosity using scaling relations, following Limousin et
al. (2005) [28].

3.6 Results

3.6.1 The Lens Model

The best-fit model is obtained by an MCMC optimization sampling 1000 dif-
ferent models. We set priors and ranges for each parameter that varied. As the
model improved and we consistently produced similar results we tightened the
constraints on the parameters. With six free parameters for the cluster halo
and four for the BCG halo, there are ten free parameters in total for this model.
We have identified 38 different knots which gives 76 constraints.

This model was run through both source-plane and image-plane optimiza-
tions, the χ2 of the best model in the image plane being 1.72. Figure 7 shows
the critical curves and caustics of the best-fit model for a source at z = 0.816.
The critical curves represent the locations in the image plane where we would
theoretically have an infinite magnification. If these curves are mapped to the
source plane we get what are called caustics. The images change parity when
they are on either side of a critical curve (see figure 7), in other words they have
mirror symmetry. The critical curves bisect the image plane, and the images of
the galaxy appear with the symmetry and parity we expect.
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Figure 7: The best-fit lens model of SDSS J1438+1454. Cyan ellipses represent
the locations of mass halos. O1 is the dark matter halo, O2 is the BCG halo, and
the numbers correspond to cluster member galaxies ranked in descending order
of their flux, starting with the BCG. The red curves are the critical curves, drawn
for a source at z = 0.816 and the yellow curves are the caustics. The dark matter
halo is 5.′′ offset from the BCG in the direction of the second and third brightest
cluster galaxies, which contribute significantly to the mass distribution.

Figure 8 is a collection of 2D histograms where every free parameter is plotted
against every other free parameter. The values come from chains of parame-
ters in the MCMC sampling and the color gradient is such that redder areas
represent higher densities of points. We find that the x and y parameters are
anti-correlated, so that as the center of the cluster halo is moved along the SW-
NE diagonal the model does not change appreciably. The correlation between
σ and rcore is a consequence of our choice of the PIEMD for a mass profile
(see appendix A). Table 2 shows the values for each parameter from the best-fit
model. The uncertainties for the values in table 2 are calculated by finding a
68% confidence interval centered on the mean and then finding the difference
between the value at the upper and lower bounds and the best-fit value.
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Figure 8: 2D histogram showing the free parameters plotted against each other.
The x and y of the cluster are correlated, meaning that there is a degeneracy in
the lens model. If the cluster center point is moved in the x direction and the
correlated amount in the y direction, then the model would be just as good. The
correlation between the cluster core radius and the cluster velocity dispersion
is a result of using the PIEMD for the potential, where those two parameters’
correlation is built in.
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Figure 9: These histograms show the number of times each model had each
parameter. The blue lines are the best-fit value and the black lines enclose 68%
of the models. The red curve is a best-fit Gaussian, which may not actually
represent the data but can be useful nevertheless. See table 2 for numbers.

Best-Fit Values
Parameter Cluster BCG

R.A. [”] 4.74+1.10
−2.90 0

Decl. [”] −1.18+0.73
−0.37 0

e 0.83+0.11
−0.11 0.55+0.01

−0.44
θ [◦] 166+1

−1 167+19
−22

rcore [kpc] 8.36+0.73
−3.96 0.68+0.45

−0.40
σ [km/s] 598+47

−76 307+13
−64

Table 2: Best-fit values from the image plane optimization. The R.A. and Decl.
of the BCG are fixed and the observed location, R.A. = 219.68768◦, and Decl.
= 14.903482◦. The position of the cluster halo is measured relative to the BCG.
θ is measured north of west, and the ellipticity of the projected mass density is
e = (a2 − b2)/(a2 + b2).
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3.6.2 The Cluster Mass

The best-fit model is translated from a 3D mass density to a projected mass
density by integrating out the line-of-sight variable, leading to equation 11. We
calculate the projected mass density of the cluster from the best-fit model (see
figure 10) and then sum that over a disk of radius 9.′′(≈ 34 kpc) centered on the
BCG. We choose that radius because strong lensing only constrains the mass
out to furthest arc. Therefore, the mass quoted here is a mass of the core of
the cluster, not the total mass. The total mass of the cluster would be best
measured by weak lensing or other mass proxies, and is beyond the scope of
this work. Nevertheless, extrapolation of the strong lensing mass out to 500
kpc (∼ 135.′′) yields a total enclosed mass of 1.06× 1014 M�. We note that this
number has a large uncertainty, due to the inability of strong lensing alone to
constrain the mass outside of the strong lensing region.

We calculate the uncertainties by going through a representative sample from
the MCMC sets of parameters (in this case all of the models) and calculating
the mass of the cluster for each one. In figure 11 we plot the mass of the cluster
as calculated from parameter sets from all the steps of the MCMC sampling.
The best-fit enclosed mass within 9 arcsec (34 kpc) is 6.08+0.25

−0.65×1012 M�. The
uncertainties are estimated as 1σ as sampled by the MCMC process.

Figure 10: Surface mass density contour plot.
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Figure 11: Histogram showing 1000 different models with slightly varied param-
eters in 20 bins. The red line is the location of the best model. The two cyan
lines contains 68% of the models. The mass is calculated within a 9 arcsecond
radius (≈ 34 kpc) from the BCG. This is because strong lensing only constrains
the mass out to the distance of the furthest lensed image.

3.6.3 Magnification

Figure 12 shows the magnification contours from the best-fit model. We find
that the magnification is not constant along the galaxy, but changes by about
a factor of three across one image (about 5.′′ ≈ 19 kpc). At the core of the top
image the magnification is about 3.5, for the bottom it is about 2.75, and for
the bisected image it is about 2. The estimated total magnification, taken by
summing the areas of each image and dividing that by the area of the galaxy,
is µ = 12.96.
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Figure 12: Magnification contours.

4 Discussion

The mass of the cluster is about as massive as a small group of galaxies [29].
This is in line with the number of galaxies reported in Gladders et. al. [18] of

Nweighted
gals = 9.735. The center of the cluster halo is 5.′′05 WSW from the center

of the BCG halo. It is expected in small galaxy groups that the BCG would be
offset from the center of mass of the group [30]. This is consistent with the light
distribution of the cluster, as can be seen in figure 4. The velocity dispersion
that was reported in Gladders et. al. [18] of 318±111 km/s is in good agreement
with our best-fit value.

This kind of magnification allows our collaboration to study star formation
in the source galaxy in detail that would be unattainable without lensing. The
typical magnification of individual emission knots/star-forming regions is a fac-
tor of 3-5. This helps us study individual star forming regions in a galaxy at
z = 0.8.The angular size of the source galaxy, unmagnified, is 2.′′53(≈ 19 kpc).
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In good conditions, ground-based resolution is 0.′′6, therefore this galaxy would
cover at best up to four non-overlapping resolution elements, dominated by the
bulge. With the magnification boost, even ground observations can resolve more
than ten regions in this galaxy and thus resolve its structure.

5 Future Work

By identifying multiple images in a strong gravitational lens we were able to
develop a model for the lens. With this model we were able to get the mass of
the cluster core, the magnification it provides, and the actual location of the
sources. The next step is to hand this model to the next person in the pipeline of
the SGAS project. Using this model they will be able to study the star-forming
knots in the lensed cluster.

Grism spectroscopy of SDSS J1438+1454 was recently obtained by HST.
My collaborators are reducing the Grism observation and analyzing the data
(PI: Rigby) and will use these observations to study SDSS J1438+1454, a cool,
luminous infrared galaxy at z=0.8, and learn about the evolution of luminous
infrared galaxies from z=1 to present day. In particular, they will measure the
current star formation rate and its distribution in the galaxy, star formation
history, and stellar mass. To translate all of these properties from the observed
frame to the intrinsic, unlensed frame, one needs a good understanding of the
magnification – since they all scale linearly with the magnification. Therefore,
the magnification map that I calculated and presented in this thesis will be a
critical and indispensable input to understanding the physical properties of this
galaxy in particular, and through that, study the evolution of its population
across cosmic time.
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A Pseudo Isothermal Ellipsoidal Mass Distribution-
PIEMD

We use parametric modeling (vs. non-parametric) and this means that we as-
sume that the gravitational potential can be modeled with an analytic function.
There are many out there, but some of the most common are the Navarro-Frank-
White (NFW), the singular isothermal sphere (SIS), a power law with a core
radius, and a Sérsic. In fact the SIS is just a special case of the PIEMD with
a vanishing core radius. The models all assume a three-dimensional mass dis-
tribution, ρ(r) = f(r). However we assume that the lens is very thin compared
to the distances between it and the source and between it and us. Therefore
lensing effectively occurs on a two-dimensional plane in the sky, so the quantity
of interest is actually the integral of ρ(r) over the line of sight variable yielding
the surface mass density, called Σ(R), with R being a two-dimensional radial
coordinate in the plane of the sky. The analytic form of the PIEMD is

ρ(r) =
ρ0

(1 + r2/r2core)(1 + r2/r2cut)
, (10)

with rcore being the core radius and rcut being the cut radius, and rcut > rcore.
Near the center, r � rcore < rcut, so ρ(r) ≈ ρ0. When rcore < r < rcut, the
distribution falls of as r−2 [28]. Far away, r � rcut so the distribution falls off
as r−4, which is typical of elliptical galaxies [28]. Integration of (10) over the
line of sight coordinate yields [28]

Σ(R) =
σ2
0rcut

2G(rcut − rcore)

(
1√

r2core +R2
− 1√

r2cut +R2

)
, (11)

where σ0 is the central velocity dispersion and is related to ρ0 by

ρ0 =
σ2
0

2πG

(
rcut + rcore
r2corercut

)
. (12)
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