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SASI What and why?

What is the SASI?

Linear...
Standing Accretion Shock Instability [2] _ !
@ After stellar core bounce, shock stalls, ; ‘ g
still accreting matter L i
<
@ Accretion shock unstable to non-radial . Non-Linear
perturbations = I ‘
2 o
o In 2D, instability dominated by ¢ = 1 3 s
c
<

mode in Legendre decomposition
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SASI

Why should you care?

Impacts
@ Assists shock revival
@ Impacts explosion morphology
@ Impacts neutrino emission
@ Produces gravitational waves

How does GR affect SASI?

@ We perform a parameter study:

vary mass of PNS,

M/Mg € {1.4,2.0,2.8}, and
initial shock radius,

Rs/km € {120, 150,180}

SASI: NR vs. GR

What and why?
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Figure: Spectrogram from simulation of
non-rotating 15 Mg progenitor [3].
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Our Study

thornado

toolkit for high-order neutrino radiation hydrodynamics

@ Publicly available on GitHub: https://www.github.com/endeve/thornado

Solves (GR)HD equations with dynamic spacetimes

Solves GR neutrino moment equations (under testing)

Uses extended conformally-flat condition of GR

Uses Runge—Kutta discontinuous Galerkin methods

We compare results of the SASI using Newtonian and general relativistic
treatments
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Our Study

Initial Conditions

@ Stationary metric:

o 109 0.000
ds? = —a? (r) dt® +¢* (r) ¥ij dx* dx? 0.5
~0.050
@ Spherical PNS of radius 40 km Coors
@ Outer boundary of 360 km —0.100>
-0.125
o Polytropic process: p = K p*/3 ~0.150
-0.175

100 200 300

o K fixed above and below shock Radial Coordinate [km]

@ Solve steady state hydro equations: Figure: Initial conditions for model
GR_M1.4 Rs120.
%&« [ \AF(U)] =aS(U) s
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Our Study

Initial Conditions

+10°°

@ Evolve in 1D to remove transients
@ Map steady solution to 2D

@ Slightly perturb post-shock pressure:

*(T*T6>2

Ap(r,0) =10"%p(r.) e 202  cosf

Dplp(re)

@ Evolve just until non-linear phase is
reached (~ 300 ms)

—10-6
180°

@ Extract characteristics of SASI in linear

regime (growth rate and oscillation period) Figure: Pressure perturbation to initiate
SASI.
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Our Study

Legendre Decomposition

GR2D_M2.0_Mdot0.3_Rs120

o A(t,r,0):= =250 (v (t,r,0) sind) [5] Divv2, 0.60-0.50
e Compute Legendre decomposition [1] %:00010
Go(t,r) =13 [T A(t,r,0) Py(cos0) sinfdo ="
09 e 2 e R LA
and power By (t) := [ [Ge(t,r)]*r?dr 710 YN
0.8 Rs o107 - /\[ /‘“[ \
. . 3 10 ~7Y
e Fit By (t) with least-squares to o /A\/V AR
F (t) = Fl 62 wyt sin2 (wl t + 5) [1] 0 20 40 60 ﬁm:nos] 100 120 140
o Growth rate: w, =1/(27) Figure: Top panel: deviation of shock
o radius from spherical symmetry. Bottom
o Oscillation frequency: w; = 2m/T panel: blue line: By (t), orange line: F (t).
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Our Study Results

Results: Oscillation Period

e Estimate from Miiller (2020) [4]:

Rs
TSASI A Tad + Tac = f |v7“ + f s ,|Ur|

Rpns

@ Good agreement between Newtonian and
GR (better than 2%)

@ Both agree well with estimate (within

20%)
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Our Study

Results: Growth Rate

Results

M2.0_Rs120
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@ SASI power in the £ = 1 mode
increases faster with Newtonian o e
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Conclusions
Conclusions

Summary
@ Within our range of parameters,

e Newtonian and GR treatments give comparable oscillation periods and agree with
estimate
o GR treatment predicts slower growth rates than Newtonian treatment

Future Work
@ Further analysis to understand differences in growth rate
@ Vary accretion rate

@ Perform study in 3D
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